Feed Forward Algorithm (Simplified)
// Initialize weights and biases randomly
weights_input_hidden = random_matrix(inputNodes, hiddenNodes)
weights_hidden_output = random_matrix(hiddenNodes, outputNodes)
bias_hidden = random_vector(hiddenNodes)
bias_output = random_vector(outputNodes)
function feedForward(inputValues):
// Hidden layer calculation
hidden_layer_input = dot_product(inputValues, weights_input_hidden) + bias_hidden
hidden_layer_output = sigmoid(hidden_layer_input) // Activation function
// Output layer calculation
output_layer_input = dot_product(hidden_layer_output, weights_hidden_output) + bias_output
output_layer_output = sigmoid(output_layer_input) // Activation function
return output_layer_output
function epoch():
// For visualization purpose, we are simulating learning.
// In real scenario, this would involve backpropagation and weight updates.
current_outputs = feedForward(current_inputs)
// In a real learning scenario:
// Calculate error (loss)
// Adjust weights and biases to reduce error (using backpropagation)
// For visualization, we might just nudge the output values
// towards some target or show a change.