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1 Introduction
Clustering is a fundamental technique in data analysis, aiming to group similar objects into
clusters. These notes explore advanced topics in clustering, including anti-clustering, Jon
Kleinberg’s impossibility theorem, and evaluation methods. They are designed for clarity
and depth, with mathematical rigor and practical insights, making them valuable for final
exams.

2 Anti-Clustering
Anti-clustering reverses the goal of traditional clustering. Instead of minimizing variance within
clusters and maximizing it between clusters, anti-clustering seeks to maximize intra-cluster
variance and minimize inter-cluster variance.

2.1 Mathematical Formulation

Consider a dataset of points {x1, x2, . . . , xn} with overall mean µ. The total variance is:

σ =
∑

x

∥x − µ∥2

Total
variance
measures
dispersion
from the
overall
mean.

In clustering, we partition the data into clusters c1, c2, . . . , ck, each with mean ui. The
variance can be expressed over clusters:

σ =
∑
ci

∑
x∈ci

∥x − µ∥2

Decompose x − µ as:

x − µ = (x − ui) + (ui − µ)

Define: - a = x − ui (distance from a point to its cluster mean), - b = ui − µ (distance from
the cluster mean to the overall mean).

Then:

∥x − µ∥2 = ∥a + b∥2 = a2 + 2a · b + b2

Summing over all points in cluster ci:∑
x∈ci

∥x − µ∥2 =
∑
x∈ci

∥x − ui∥2 + 2
∑
x∈ci

(x − ui) · (ui − µ) +
∑
x∈ci

∥ui − µ∥2
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- a2 = ∥x − ui∥2: The Sum of Squared Errors (SSE) for cluster ci, i.e., SSEci =∑
x∈ci

∥x − ui∥2. - 2a · b: This term sums to zero because:∑
x∈ci

(x − ui) = 0 (since ui is the mean of ci),

⇒ 2(ui − µ) ·
∑
x∈ci

(x − ui) = 2(ui − µ) · 0 = 0.

- b2 = ∥ui − µ∥2: Constant for all points in ci, so
∑

x∈ci
∥ui − µ∥2 = |ci| · ∥ui − µ∥2, where

|ci| is the size of cluster ci.
Thus, the total variance is:

σ =
∑
ci

(
SSEci + |ci| · ∥ui − µ∥2

)
In anti-clustering: - Maximize SSEci (intra-cluster variance), - Minimize |ci| · ∥ui − µ∥2

(inter-cluster variance).

2.2 Updating Clusters

When updating clusters incrementally (e.g., moving a point from one cluster to another), re-
computing ui and x − ui for all points is inefficient. Instead:

- Subtract the removed point’s value from the cluster sum and adjust the mean. - Add the
new point’s value to the target cluster’s sum and update its mean.

This allows efficient computation of x − ui for each point affected by the update.1

3 Jon Kleinberg’s Impossibility Theorem
Jon Kleinberg’s impossibility theorem highlights a fundamental limitation in clustering: no
single algorithm can satisfy three intuitive properties simultaneously.

3.1 Basic Clustering Methods

Clustering can be performed in several ways:
1.K-Clustering via Minimum Spanning Tree (MST): - Construct an MST of the data

points based on pairwise distances. - Remove the k − 1 longest edges to form k clusters.
2.R-Distance Clustering: - Set a threshold distance r. - Connect points with distances

< r, forming clusters as connected components. In an MST, this corresponds to edges < r.
3.P* Distance Clustering: - Define a threshold on the maximum distance between any

two points in a cluster (cluster diameter).

3.2 Properties of Clustering

Kleinberg defined three desirable properties:
1.Scale Invariance: Clustering remains unchanged if all distances are scaled by a constant

α > 0 (e.g., converting meters to kilometers).
2.Richness: The algorithm can produce any possible partition of the data by adjusting its

parameters.
3.Consistency: If intra-cluster distances decrease and inter-cluster distances increase, the

clustering remains the same.
1This method is particularly useful in iterative algorithms like k-means variants adapted for anti-clustering.
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3.3 The Impossibility Theorem

Theorem 1. Impossibility Theorem: No clustering algorithm can simultaneously satisfy
scale invariance, richness, and consistency.

3.4 Properties Satisfied by Basic Methods

Method Scale Invariance Richness Consistency
K-Clustering (MST) Yes No Yes
R-Distance No Yes Yes
P* Distance Yes Yes No

Table 1: Properties satisfied by basic clustering algorithms.

-K-Clustering: Scale-invariant (edge rankings in MST are preserved), consistent (distance
changes don’t alter the MST structure), but not rich (limited to k clusters). -R-Distance:
Rich (any partition possible by tuning r), consistent, but not scale-invariant (fixed r breaks
under scaling). -P* Distance: Scale-invariant, rich, but not consistent (reducing intra-cluster
distances may split clusters).

3.5 Proof by Contradiction

Assume a clustering algorithm A satisfies all three properties. Consider a dataset with points
{p1, p2, p3} and distances d(p1, p2) = 1, d(p2, p3) = 1, d(p1, p3) = 2.

- By richness, A can produce partition {{p1, p2}, {p3}}. - Scale distances by α = 2:
d(p1, p2) = 2, d(p2, p3) = 2, d(p1, p3) = 4. By scale invariance, the partition remains {{p1, p2}, {p3}}.
- Now adjust distances: d′(p1, p2) = 1 (decreased), d′(p2, p3) = 3 (increased), d′(p1, p3) = 4. By
consistency, the partition should still be {{p1, p2}, {p3}}. - But by richness, A can also produce
{{p1}, {p2, p3}} for some parameter. Scale invariance and consistency force A to maintain one
partition, contradicting richness’s flexibility.

Thus, no such A exists.2

2See Kleinberg’s 2002 paper for the full proof.
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4 Evaluation Methods
Evaluating clustering quality is essential. Methods are divided into external (using true labels)
and internal (using data alone), with techniques to combine multiple algorithms.

4.1 External Evaluation Methods

Assuming true labels are known, we compare clusters to ground truth.

4.1.1 Confusion Matrix Terms

For pairs of points: -TP (True Positive): Same cluster in both true labels and result. -FP
(False Positive): Same cluster in result, different in true labels. -TN (True Negative):
Different clusters in both. -FN (False Negative): Different in result, same in true labels.

4.1.2 Rand Index

Rand Index = TP + TN
TP + FP + TN + FN

Measures overall agreement but includes TN, which may inflate scores in sparse clustering.

4.1.3 Jaccard Coefficient

Jaccard = TP
TP + FP + FN

Excludes TN, focusing on positive agreements, addressing Rand’s bias.

4.1.4 Precision and Recall

-Precision: TP
TP+FP (accuracy of positive predictions). -Recall: TP

TP+FN (coverage of true
positives).

These can be exploited separately (e.g., high precision, low recall), so combined metrics are
preferred.

4.1.5 F1 Score

F1 = 2 · Precision · Recall
Precision + Recall

Harmonic mean, balancing precision and recall.

4.1.6 Fowlkes-Mallows Index

FM =
√

Precision · Recall

Geometric mean, sensitive to both metrics.
No
method is
univer-
sally best;
choose
based on
context.

4.2 Internal Evaluation Methods

No true labels are needed.

4.2.1 Average Intra-Cluster Distance

Avg Intra = 1
|ci|

∑
x,y∈ci

d(x, y)

Lower values indicate tighter clusters.
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4.2.2 Average Distance to Nearest Cluster

Avg Nearest = 1
|ci|

∑
x∈ci

min
y∈cj ,j ̸=i

d(x, y)

Higher values indicate better separation.

4.2.3 Dunn Index

Dunn = mini ̸=j d(ci, cj)
maxl diam(cl)

- d(ci, cj): Minimum distance between clusters ci and cj . - diam(cl): Maximum distance within
cluster cl. Higher values signify compact, well-separated clusters.

4.3 Combining Multiple Clustering Algorithms

Run multiple algorithms, creating a consensus: - Each algorithm produces a binary matrix (1
if points are clustered together, 0 otherwise). - Average these matrices to form a consensus
matrix. - Apply a final clustering (e.g., hierarchical clustering) to the consensus matrix.
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