
Using anticlustering to partition data sets into equivalent parts

Martin Papenberg & Gunnar W. Klau

Heinrich Heine University Düsseldorf

c©2020, American Psychological Association. This paper is not the copy of record and may

not exactly replicate the final, authoritative version of the article. Please do not copy or cite

without authors’ permission. The final article is available in Psychological Methods via its

DOI: 10.1037/met0000301

Author note

Martin Papenberg, Department of Experimental Psychology, Heinrich Heine University Düsseldorf; Gunnar

W. Klau, Department of Computer Science, Heinrich Heine University Düsseldorf.

Part of the work presented in this paper is based on Martin Papenberg’s Bachelor thesis at the Computer

Science Department at Heinrich Heine University Düsseldorf, supervised by Gunnar W. Klau. The software

package anticlust, which is presented in this paper, was presented at the TeaP conference in London in

April, 2019, and at a meeting at the Department of Experimental Psychology at Heinrich Heine University

Düsseldorf in July, 2019. The slides presented at these occasions can be retrieved from https://osf.io/cd5sr/.

The documentation accompanying the software package anticlust also contains some background on the

anticlustering methodology, retrieved from https://github.com/m-Py/anticlust. The preprint of this paper

can be retrieved from https://psyarxiv.com/3razc/. The open science framework contains supplementary

data and analysis scripts, available via https://doi.org/10.17605/OSF.IO/CD5SR.

We would like to thank Juliane V. Tkotz for her detailed feedback on an earlier version of this manuscript.

Correspondence concerning this article should be addressed to Martin Papenberg, Heinrich Heine Universität

Düsseldorf, Institut für Experimentelle Psychologie, Universitätsstraße 1, 40225 Düsseldorf, Germany. E-

mail: martin.papenberg@hhu.de

https://doi.org/10.1037/met0000301

ANTICLUSTERING 2

Abstract

Numerous applications in psychological research require that a pool of elements is

partitioned into multiple parts. While many applications seek groups that are well-separated,

i.e., dissimilar from each other, others require the different groups to be as similar as

possible. Examples include the assignment of students to parallel courses, assembling

stimulus sets in experimental psychology, splitting achievement tests into parts of equal

difficulty, and dividing a data set for cross validation. We present anticlust, an easy-to-use

and free software package for solving these problems fast and in an automated manner. The

package anticlust is an open source extension to the R programming language and

implements the methodology of anticlustering. Anticlustering divides elements into similar

parts, ensuring similarity between groups by enforcing heterogeneity within groups. Thus,

anticlustering is the direct reversal of cluster analysis that aims to maximize homogeneity

within groups and dissimilarity between groups. Our package anticlust implements two

anticlustering criteria, reversing the clustering methods k-means and cluster editing,

respectively. In a simulation study, we show that anticlustering returns excellent results and

outperforms alternative approaches like random assignment and matching. In three example

applications, we illustrate how to apply anticlust on real data sets. We demonstrate how

to assign experimental stimuli to equivalent sets based on norming data, how to divide a

large data set for cross validation, and how to split a test into parts of equal item difficulty

and discrimination.

Keywords: anticlustering, maximum diverse grouping problem, cluster editing, k-means

clustering, partitioning

Word count: 8000

ANTICLUSTERING 3

Using anticlustering to partition data sets into equivalent parts

Numerous applications in psychological research require that a pool of elements is

partitioned into multiple parts, while ensuring that all parts are as similar as possible

(Brusco, Cradit, & Steinley, in press). When dividing students into groups in a schooling

context, teachers are often interested in assembling groups that are similar with regard to

scholastic ability and demographic composition (Desrosiers, Mladenović, & Villeneuve, 2005).

In educational psychology, it is sometimes necessary to split a pool of test items into parts of

equal length that are presented to different cohorts of students. To ensure test fairness, it is

required that all parts are equally difficult (Brusco, Köhn, & Steinley, 2013; Gierl, Daniels, &

Zhang, 2017; van der Linden, 2005). Splitting a data set also has applications in the context

of data analysis: With the increasing demand for machine learning methods in psychology,

cross validation techniques have become more important to test the predictive performance

of statistical models (Yarkoni & Westfall, 2017). Most cross validation require that a data

set is split into multiple parts where one part serves as a validation sample. While the data

is usually partitioned using a random split, it is preferable to employ a partitioning method

that balances the distribution of the variables in the data set across samples (e.g., Zeng &

Martinez, 2000).

Another important partitioning problem arises in experimental psychology regarding

the assembly of stimulus sets. When designing a study, researchers are often faced with the

challenge to select multiple subsets of stimuli that are presented in different experimental

conditions (Brusco & Stahl, 2001). When the experimental manipulation is realized

within-subjects, it is desirable that the stimulus sets accompanying the different

experimental conditions are as similar as possible on dimensions that affect the participants’

responses; differences between conditions should be attributable to the experimental

manipulation and not to the materials (Lahl & Pietrowsky, 2006). For example, Lahl,

Wispel, Willigens, and Pietrowsky (2008) investigated the effect of napping on recall memory.

ANTICLUSTERING 4

In their study, each participant completed a napping session and a wake session, separated

by a one week wash out period. Before each session, participants had to memorize a list of

30 words; after each session, word recall was tested. Due to possible carry-over effects,

presenting the same word list in both conditions was not feasible. Instead, two word lists

had to be created and counterbalanced across the experimental conditions (wake versus

sleep). It was desirable that both lists were as similar as possible on dimensions that are

known to affect memory performance.

Researchers have usually relied on ad-hoc approaches when splitting a stimulus pool

into similar parts. Mostly, researchers have relied on manual assignment (van Casteren &

Davis, 2007), random assignment, and, to a lesser degree, matching-based assignment (e.g.,

Buchner & Wippich, 2000). Schaper et al. (2019a, 2019b) selected 96 words from a total

pool of 1,004 words based on a desired range in typicality ratings. Next, they manually

partitioned the item pool into three equal-sized sets in such a way that mean values of

typicality, number of syllables, and word frequency were similar. Unfortunately, manually

selecting stimulus sets is time consuming and daunting, and the resulting sets are usually not

optimally matched with regard to their similarity (Armstrong, Watson, & Plaut, 2012;

Cutler, 1981; van Casteren & Davis, 2007). Other researchers have randomly assigned

stimuli to experimental sets (e.g., Heck & Erdfelder, 2016; Kroneisen & Bell, 2018). While

random assignment may possess face validity as a partitioning procedure, it does not

guarantee that the resulting sets will be similar. Lahl and Pietrowsky (2006) proposed to

match stimuli based on a mathematical distance between quantified stimulus

properties—such as word frequency or typicality ratings—and advocated the following

procedure to assign stimuli to experimental sets: (a) compute the pairwise distances between

all items; (b) match the two most similar items on the basis of the distance measure; (c)

assign the matched items to different sets; repeat steps (b) and (c) until the experimental

sets are filled. They did not specify a rule for step (c), i.e., how to assign the matched items

to sets, leaving this decision to the researcher. Usually, the matched stimuli would be

ANTICLUSTERING 5

allocated to sets via random assignment (e.g., Buchner & Wippich, 2000).

Matching is not well-suited for partitioning a stimulus pool into similar parts. Figure 1

illustrates a problem that matching-based partitioning may run into. Here, four stimuli

described by two numeric attributes, x and y, have to be allocated to two sets. The

matching will pair the two items in the upper left and the two items in the lower right of the

plot. Two partitionings are possible based on the matching, shown in the middle and right

panel of Figure 1. Of these two, partitioning (b) is clearly to be preferred because in

partitioning (a), one stimulus set consists of stimuli with larger values on both numeric

attributes. Unfortunately, matching does not prevent—and may instead produce—such

misassignments. Matching does not differentiate between the different possible ways to

allocate stimuli after the matching has been conducted. In the present case of only four

stimuli, a researcher might be able to manually correct the assignment. However, with many

stimuli and many numeric attributes, a manual correction quickly becomes impossible

(Cutler, 1981). The number of possible assignments after the matching grows exponentially

with the size of the stimulus pool. Therefore, intrinsically, partitioning an item pool into

similar parts is not a matching problem. A different approach is needed that unambiguously

strives to maximize the similarity of the stimulus sets.

Partitioning a stimulus pool into parts resembles a clustering application because a

pool of elements has to be divided into multiple disjunct subsets, which is accomplished by

cluster analysis (Rokach & Maimon, 2005). However, a cluster analysis creates subsets in

such a way that the elements within clusters are homogeneous—i.e., similar to each

other—but dissimilar from the elements in other clusters. When partitioning a stimulus pool

into experimental sets, the opposite is desired: the different sets should be as similar as

possible. Interestingly, Späth (1986) and Valev (1983, 1998) already noted that by reversing

the logic of the popular k-means clustering method, they were able to establish clusters that

were similar to each other. They independently coined the term anticlustering for this

ANTICLUSTERING 6

Matching Matching-based
partitioning (a)

Matching-based
partitioning (b)

x

y

x

y

x

y

Figure 1 . An illustration of matching-based partitioning. Based on the identification of

similar item pairs (matches), a stimulus pool of four items has to be partitioned into two sets

that should be as similar as possible on two numeric attributes.

purpose. Notably, it has been recognized that forming similar groups is equivalent to

maximizing the heterogeneity within groups (Feo & Khellaf, 1990). That is, anticlustering

ensures similarity between groups by enforcing dissimilarity—i.e., heterogeneity—within

groups. Thus, anticlustering diametrically reverses the logic of cluster analysis that strives to

maximize homogeneity within groups and dissimilarity between groups. Correspondingly,

anticlustering has also been referred to as the “maximally diverse grouping problem” (e.g.,

Fan, Chen, Ma, & Zeng, 2011; Brusco et al., in press). A problem that has close resemblance

to the maximum diverse grouping problem is the “maximum diversity problem” (Glover,

Kuo, & Dhir, 1998). However, the maximum diversity problem requires to extract only a

subset of all elements in such a way that these are as diverse as possible, whereas

anticlustering allocates each element to a group. A variety of other objectives have also been

discussed as suitable anticlustering criteria (Baker & Powell, 2002).

The need for anticlustering methods has been recognized, among others, in the areas of

operational research (e.g., Baker & Powell, 2002; Palubeckis, Ostreika, & Rubliauskas, 2015),

management science (e.g., Krass & Ovchinnikov, 2006), and artificial intelligence (e.g.,

Steghöfer, Behrmann, Anders, Siefert, & Reif, 2013). The problem has also been studied

ANTICLUSTERING 7

with emphasis on particular applications, such as very large-scale integration (Weitz &

Lakshminarayanan, 1997, 1998), working or student group formation (Baker & Powell, 2002;

Krass & Ovchinnikov, 2006), and exam scheduling (Weitz & Lakshminarayanan, 1997).

Despite the wide applicability, the value of anticlustering has not been recognized in

psychology up until recently (cf. Steinley, 2006). This underutilization most likely stems

from two driving factors: First, a formal introduction of anticlustering to the psychological

literature was only provided very recently by Brusco et al. (in press). Thus, it is likely that

most psychologists were not aware that some of their research problems could be solved

automatically via anticlustering. Second, and maybe more severely, anticlustering methods

have previously not been accessible through free or commercial software packages. Thus,

even if some psychologists were aware of the benefits of anticlustering, they would have

required a certain programming skill set—and a substantial amount of time—to implement

these methods themselves.

Our primary contribution is to make the anticlustering methodology more accessible to

researchers in psychology. First, we provide a formal introduction to the theory of

anticlustering, focusing on two major anticlustering objectives: k-means clustering (Jain,

2010; Steinley, 2006) and cluster editing (Shamir, Sharan, & Tsur, 2004; Zahn, 1964). Second

and most critically, we present anticlust, a free and easy-to-use software implementation of

anticlustering. It is available as an open source software extension to the widely used

statistical programming language R (R Core Team, 2019). Using real and simulated data, we

demonstrate the superiority of anticlustering in comparison to other partitioning strategies

that researchers have employed (manual assignment, random assignment, matching). We

conclude by providing several examples of how to apply anticlust on real data sets. The

examples include the creation of stimulus sets in experimental psychology, splitting a large

data set for cross validation, and splitting a test into parts of equal difficulty.

ANTICLUSTERING 8

Problem Formalization

In anticlustering, an item pool X = {x1, . . . , xN} has to be partitioned into K subsets

C = {c1, . . . , cK}. We will refer to the subsets cj, j = 1, . . . , K, as anticlusters, sets, or

groups, and to the collection of anticlusters C as the anticlustering partitioning. We assume

that each item xi, i = 1, . . . , N , is a vector of length M where each entry describes one of its

numeric attributes. Thus, the data input X is interpreted as an N ×M matrix D where

each row represents an item xi (e.g., representing a stimulus or a person) and each column is

a numeric attribute (e.g., the number of syllables in a word, or the attractiveness rating of a

face). For the sake of simplicity, we will only use a positional index i = 1, . . . , N to refer to

an item xi henceforth.

The anticlustering partitioning has to satisfy the following restrictions:

K⋃
j=1

cj = X (1)

cj ∩ ck = ∅, ∀j, k ∈ {1, . . . , K}, j 6= k (2)

|cj| = |ck|, ∀j, k ∈ {1, . . . , K} (3)

Restriction (1) ensures that each element from the pool is assigned to an anticluster;

restriction (2) ensures that each element is assigned to only one anticluster; restriction (3)

ensures that each anticluster contains the same number of elements, namely N
K
. Enforcing the

same number of elements in each set follows from the convention that in most anticlustering

applications—such as constructing conditions in experimental psychology—groups should be

as parallel as possible; it is not a general restriction for anticlustering methods.

The anticlustering partitioning C has to be chosen in such a way that all groups are as

similar as possible. Similarity is assessed on the basis of the data input D for a given

partitioning. The following sections detail how between-group similarity can be computed in

ANTICLUSTERING 9

the context of anticlustering. In particular, we discuss two important anticlustering criteria,

corresponding to the clustering methods k-means and cluster editing.

K-means clustering

The popular k-means clustering method aims at minimizing the within-group variance,

i.e., the sum of the squared Euclidean distances between each data point and its cluster

center (Jain, 2010):

Varwithin =
K∑

j=1

∑
i∈cj

||i− µj||2 (4)

The cluster center µj is composed of the mean feature values in a given cluster

cj, j ∈ 1, . . . , K (illustrated by the triangulars in Figure 2A and 2B); ||i− j|| is the

Euclidean distance between two items i and j, defined as the root of the sum of the squared

differences between items on each feature:

deucl(i, j) = ||i− j|| =

√√√√ M∑
m=1

(im − jm)2 (5)

When items are described by two features (i.e., M = 2), the Euclidean distance

corresponds to the geometric, “straightline” distance between points in a two-dimensional

space; more similar items are closer to each other (see Figure 2).

Späth (1986) and Valev (1983, 1998) proposed to maximize the variance criterion to

create similar sets, coining the term anticlustering. Späth (1986) showed that maximimizing

the variance criterion directly minimizes differences between the cluster centers. When the

within-cluster variance is maximal, the cluster centers become as similar as possible (see

Figure 2B).

ANTICLUSTERING 10

K-means clustering:
Minimum variance within

clusters

K-means anticlustering:
Maximum variance within

clusters

x

y

x

y

Cluster editing:
Minimum sum of distance

within clusters

Anticluster editing:
Maximum sum of distance

within clusters

x

y

x

y

A B

C D

Figure 2 . For the purpose of illustration, six items, described by two numeric features x and

y, have been partitioned into two equal-sized groups. A cluster partitioning is obtained when

the within-cluster heterogeneity is low and the between-cluster heterogeneity is high (panels

A and C). An anticluster partitioning is obtained when the within-cluster heterogeneity is

high and the between-cluster heterogeneity is low (panels B and D). K-means clustering

measures within-cluster heterogeneity as the sum of squared Euclidean distances between

data points and cluster centers (shown as the triangulas in panels A and B). Cluster editing

measures within-cluster heterogeneity as the sum of pairwise dissimilarities within groups

(illustrated in panels C and D). In each panel, the solid lines illustrate the distances that

enter the objective functions of the respective clustering methods.

ANTICLUSTERING 11

Cluster editing

Another popular anticlustering method reverses a different clustering paradigm,

namely cluster editing (Shamir et al., 2004; Zahn, 1964). Cluster editing has also been

studied under different names such as correlation clustering (Bansal, Blum, & Chawla, 2004),

clique partitioning (Grötschel & Wakabayashi, 1989), and transitivity clustering (Wittkop et

al., 2010). Brusco and Köhn (2009) were the first to treat cluster editing as an analytic tool

for researchers in psychology. K-balance partitioning, which is closely related to cluster

editing, has been studied by Brusco and Steinley (2010).

Cluster editing is based on a notion of pairwise dissimilarity between the units of

analysis. In particular, cluster editing requires to categorize pairs of elements into similar

versus dissimilar. Mathematically, for an index dij, dij < 0 implies that two elements i and j

are similar, whereas dij > 0 implies they are dissimilar. The higher the absolute value of dij,

the more (dis)similar are the elements i and j. In the unweighted variant of cluster editing,

there is only a binary distinction, dij = −1 implying that i and j are similar and dij = 1

implying they are dissimilar. If dij refers to an index of similarity rather than dissimilarity,

the interpretation is reversed.1

The cluster editing objective function, which should be minimized, is given as the as

the sum of pairwise dissimilarities between elements within the same cluster (see Figure 2C

and 2D):

Dwithin =
∑

1≤i<j≤n

dijxij (6)

1 While the cluster editing literature usually uses measures of similarity rather than dissimilarity, we discuss

dissimilarities because this case is more common in the anticlustering literature. Note that both cases are

equivalent: minimizing dissimilarity within clusters leads to the same results as maximizing similarity within

clusters, if an index of dissimilarity is converted to an index of similarity by multiplying it by −1.

ANTICLUSTERING 12

The variables xij encode whether two items i and j are part of the same anticluster:

xij =

1 if xi ∈ ck ∧ xj ∈ ck

0 otherwise
(7)

When minimizing Dwithin, the data is partitioned into homogenous clusters: elements

within each cluster tend to be similar and elements in different clusters tend to be dissimilar

(Figure 2C). For the reversed anticluster editing problem, the within-cluster sum of

dissimilarities Dwithin has to be maximized (Figure 2D). An appealing feature of cluster

editing is that the optimal number of clusters is identified solely based on the pairwise

dissimilarities, whereas most other clustering methods require that the number of clusters is

specified by the researcher (Brusco & Köhn, 2009). However, this features crucially hinges on

the quality of the dissimilarity measure. In particular, it depends on the correctness of the

dissimilarity classification, i.e., setting dij < 0 if i and j are truly similar and dij > 0 if i and

j are truly dissimilar. While such a classification may be difficult with regard to the

relationship between psychological variables, the detection of the correct number of clusters

crucially depends on it.

Fortunately, the restrictions on the dissimilarities dij are relaxed in the anticlustering

application. There is no need to classify pairs of items as similar versus dissimilar, which, in

the case of cluster editing, is necessary to automatically deduce the number of clusters. In

anticlustering, the number of anticlusters and the size thereof is usually fixed by the

application and in most cases, anticlusters of equal size are required (Gallego, Laguna, Marti,

& Duarte, 2013). Since the number of groups is specified a priori, it is sufficient to employ a

monotonous measure of dissimilarity where larger values indicate higher dissimilarity. In

principle, dij may refer to any theoretically sound measure of object dissimilarity (e.g., Dry

& Storms, 2009; Nosofsky, 1992). For many practical purposes, dij will refer to the Euclidean

ANTICLUSTERING 13

distance (e.g., Gallego et al., 2013), which is also the default option in our software

anticlust. However, note that a variety of dissimilarity measures have been proposed to

quantify stimulus dissimilarity that may be preferable depending on the researcher’s needs

(e.g., Tversky, 1977).

The sum Dwithin quantifies the diversity within groups as the sum of dissimilarities

within groups; a larger value of Dwithin implies that the within-group heterogeneity is high.

At the same time, maximizing Dwithin minimizes the sum of dissimilarities between elements

that are in different groups (Baker & Powell, 2002; Feo & Khellaf, 1990). Therefore,

maximizing Dwithin minimizes the average dissimilarity2 between items in different groups,

making Dwithin a suitable measure of between-group similarity. Because Dwithin is also a

measure of the overall diversity in a given partitioning, anticluster editing has usually been

referred to as the maximally diverse grouping problem (e.g., Fan et al., 2011; Brusco et al.,

in press; Gallego et al., 2013; Palubeckis et al., 2015; Uroŝevic, 2016). Closely tied to the

problem of maximum diversity is the problem of maximum dispersion, which refers to the

minimum value of dissimilarity between two elements within a cluster. Thus, dispersion is a

measure of “worst-case” pairwise dissimilarity across all clusters (Brusco et al., in press). In

applications that require high within-group diversity, ensuring a high dispersion is crucial.

Brusco et al. (in press) recently provided a novel algorithm that aims to simultaneously

maximize Dwithin and the dispersion. Since we are more interested in maximizing

between-group similarity rather than within-group heterogeneity, it is sufficient for us to

focus on maximizing just Dwithin.

Solution Methods

To solve anticlustering in an automated manner, we implemented heuristic and exact

algorithms that maximize the criteria Varwithin (k-means anticlustering) and Dwithin

2 Due to the restriction that each stimulus set has the same size, minimizing the sum of distances is

equivalent to minimizing the average distance between sets.

ANTICLUSTERING 14

(anticluster editing). Unfortunately, finding a partitioning that maximizes similarity

according to these criteria is computationally challenging. In particular, cluster editing,

anticluster editing, as well as k-means clustering have been shown to be NP-hard (Aloise,

Deshpande, Hansen, & Popat, 2009; Feo & Khellaf, 1990; Shamir et al., 2004), implying that

it is highly unlikely to find an exact algorithm that always returns the optimal anticlustering

partitioning in acceptable running time, at least when N is large. When N increases, the

number of anticlustering partitionings increases exponentially (see Figure 3), quickly

rendering it impossible for a computer to try them all out in acceptable running time. This

is true regardless of the speed with which a single solution can be investigated (Garey &

Johnson, 1979; van Rooij, 2008). NP-hard problems are usually tackled using heuristic

algorithms that—while not guaranteeing optimality—generally return satisfying results

(Karp, 1986). While exact algorithms are not often used in practice, they serve as useful

benchmarks for the performance of heuristics. Therefore, we implemented an exchange-based

heuristic as well as exact algorithms based on integer linear programming.

Exchange Method

Our heuristic algorithm adapts an exchange procedure proposed by Weitz and

Lakshminarayanan (Method LCW; 1998; also see Gallego et al., 2013; Späth, 1986). The

exchange method is based on swapping items between anticlusters in such a way that each

swap improves the objective value by the largest possible margin. It proceeds as follows:

First, arbitrarily assign items to anticlusters, while ensuring that each anticluster consists of

the same number of items. Then, select the first item and check how the objective function

would change if the item was swapped with each item that is currently assigned to a different

anticluster. After simulating each possible exchange—a total of (N − N
k

) exchanges—realize

the one exchange that increases the objective the most. No exchange is realized if the

objective cannot be improved. The algorithm terminates when the exchange process has

been repeated for each item.

ANTICLUSTERING 15

0

20000

40000

60000

80000

100000

120000

Number of anticlustering partitions by N and K

N

6 8 10 12 14 16 18 20

K = 4
K = 3
K = 2

Figure 3 . Illustrates the exponential increase of anticlustering partitionings with increasing

N and varying K. The number of ways to partition a set of N elements into K equal-sized

subsets is given as 1
K! ·

K−1∏
i=0

(
N− iN

K
N
K

)
.

Note that the exchange algorithm presented here is very general; it can be used to

optimize any objective function quantifying group similarity, not just the anticlustering

objectives Varwithin or Dwithin. We therefore allow the user in our software anticlust to

define customized objective functions that are optimized using the exchange method. This

general architecture makes it easy to adapt additional anticlustering objectives in the future

(e.g., Brusco et al., in press; Baker & Powell, 2002).

ANTICLUSTERING 16

Exact Anticluster Editing

We implemented exact solution methods on the basis of integer linear programming.

Integer linear programming is a very general algorithmic framework used to solve

computationally intractable problems such as anticluster editing to provable optimality

(Nemhauser & Wolsey, 1988). Integer linear programming often dramatically improves the

time needed to find an optimal solution as compared to a complete enumeration of the entire

solution space (e.g., Böcker, Briesemeister, & Klau, 2011; Grötschel & Wakabayashi, 1989).

Enumerating all possible anticlustering partitionings would also guarantee to find an optimal

solution, but this approach already becomes infeasible even for very small problem sizes

(cf. Figure 3). In contrast, integer linear programming is a more “clever” technique that

usually precludes the necessity to enumerate the entire solution space. The degree to which

running time is improved depends on the nature of the specific problem (Chen, 2017).

While integer linear programming is heavily relied on in the field of operational

research, psychological applications have been scarce. Nevertheless, there have been

important adaptions of integer linear program models. For example, van der Linden (2005)

proposed numerous models for psychological test design. Brusco and Stahl (2001) presented

some integer linear programming models for extracting subsets of stimuli from confusion

matrices. These authors also used integer linear programming to select multiple subsets of

stimuli, such there was high similarity within groups and low similarity between groups,

which is the opposite of the anticlustering problem (also see Brusco & Steinley, 2006; Brusco

et al., 2013).

Our integer linear program extends a formulation that Grötschel and Wakabayashi

(1989) provided to optimally solve cluster editing. The model identifies values for binary

variables xij—representing whether each pair of items is part of the same anticluster—that

maximize the objective function Dwithin. The optimization is subject to constraints on the

values the binary variables are allowed to assume, implemented as linear inequalities:

ANTICLUSTERING 17

−xij + xik + xjk ≤ 1, ∀ 1 ≤ i < j < k ≤ N, (8)

xij − xik + xjk ≤ 1, ∀ 1 ≤ i < j < k ≤ N, (9)

xij + xik − xjk ≤ 1, ∀ 1 ≤ i < j < k ≤ N, (10)∑
1≤i<j≤N

xij +
∑

1≤k<i≤N

xki = N

K
− 1, ∀i ∈ {1, ..., N} (11)

xij ∈ {0, 1}, ∀ 1 ≤ i < j ≤ N (12)

Constraints (8) to (10) ensure that only items within the same anticluster are

connected, i.e., xij = 1 only if items i and j are part of the same anticluster, and 0 otherwise.

Constraint (11) ensures that K groups of cardinality N
K

are returned, by enforcing that each

item is clustered with exactly N
K
− 1 other items. This constraint is an addition to the

formulation by Grötschel and Wakabayashi (1989) who did not specify the cluster size a

priori. Constraint (12) ensures that the decision variables xij are binary. The objective

function and the constraints are represented as a system of linear inequalities that is passed

to an integer linear programming solver. An integer linear programming solver acts as a

“black box” that is guaranteed to return an optimal solution. Based on the binary variables

xij, the anticluster affiliation of each item is returned as the output of our program. That is,

the output is a vector of length N where each entry is an integer between 1 and K.

Preclustering

Even though integer linear programming improves the running time by a vast amount

as compared to a brute force search, it cannot escape the potentially exponential running

time that eventually dooms all NP-hard problems. To increase the problems sizes that the

integer linear programming technique can be applied to, anticlust can employ a

preprocessing step that we call preclustering. Before the anticlustering procedure, a cluster

editing analysis is performed identifying small groups of items that are as similar as possible

ANTICLUSTERING 18

to each other. In particular, if two experimental sets have to be created (i.e., K = 2), the

preclustering step identifies pairs of similar items, i.e., matches. For K = 3, preclustering

identifies triplets of similar items etc. The preclustering step is formalized using the same

integer linear program as the anticluster editing formulation in (8) to (12), with two

exceptions. First, the criterion Dwithin has to be minimized and not maximized to obtain

homogenous groups or, equivalently, inter-item dissimilarities are multiplied by −1 before

maximization. Second, constraint (11) is replaced to ensure that each item is clustered

together with K − 1 other items:

∑
1≤i<j≤N

xij +
∑

1≤k<i≤N

xki = K − 1, ∀i ∈ {1, ..., N} (13)

After the cluster editing integer linear program has been processed to identify

preclusters, the anticluster editing integer linear program is processed, whereby preclustered

items are prevented from joining the same anticluster. Heuristically, assigning these very

similar items to a different anticluster ensures that the between-cluster distance becomes

small, i.e., preclustering by itself is a useful heuristic to establish similar sets. Note that an

optimal solution might nevertheless be prevented by preclustering, as the optimal

partitioning might—maybe counterintuitively—require to group preclustered items within

the same anticluster. However, because only very similar items are forbidden from joining

the same anticluster, preclustering usually does not impair the quality of a solution.

The preclustering constraints reduce the anticlustering problem space considerably

because each anticlustering partitioning that would join two preclustered items is no longer

feasible. Therefore, running time is improved and larger problem instances can be processed.

In the integer linear programming framework, the preclustering restrictions can be enforced

by adjusting the dissimilarity matrix in such a way that the distance between any

preclustered items is set to −∞. Because anticluster editing is a maximization problem, the

ANTICLUSTERING 19

optimal solution can no longer be obtained when preclustered items are part of the same

anticluster; any solution where preclustered items are kept in separate sets will have a better

objective value according to the criterion Dwithin. The integer linear programming solver is

able to exclude all solutions that violate preclustering constraints and browses the remaining

solution space more quickly.

Evaluation

We evaluated our anticlustering implementation with regard to running time and the

quality of the partitionings it returns. Our analyses used R (Version 3.4.4; R Core Team,

2018) and the R packages anticlust (Version 0.3.0; Papenberg, 2019), dplyr (Version 0.8.3;

Wickham, François, Henry, & Müller, 2019), papaja (Version 0.1.0.9842; Aust & Barth,

2018), and Rcplex (Version 0.3.3; Bravo & Theussl, 2016). To reproduce all analyses, all

code and data can be retrieved from the open science framework (OSF) repository

accompanying this manuscript (Papenberg & Klau, 2019).

Running Time

To test if the exact integer linear programming approach is practically feasible for

finding an optimal anticlustering partitioning, we determined the empirical running time of

anticluster editing. Data sets with varying size between 10 and 100 elements were sampled

from a standard normal distribution. Each data set was partitioned into 2 parts (i.e., K was

set to 2). The number of features per item was also set to 2. We compared our three

algorithms: (a) exact integer linear programming, (b) integer linear programming employing

preclustering restrictions and (c) the exchange method. All algorithms were used as

implemented in our R package anticlust. ILOG CPLEX (Version 12.8.0; IBM, 2019) was

used as the backend integer linear programming solver. All tests were running on an Intel

Core i7-7700 computer (3.60GHz x 8) with 8 GB RAM running Ubuntu 16.04 LTS. The time

limit per test was set to four hours.

ANTICLUSTERING 20

Table 1 illustrates the results. The exact integer linear programming approach was

only used for N ≤ 30 because the exponential explosion of the running time already set in;

with N = 30, two sets were created in about three hours. When including preclustering

restrictions, the integer linear programming technique could be applied to data sets up to

N = 70 in similar time. The exchange method was fast for all of the tested problem sizes as

each data set was processed in less than a second.

Simulation Study

In a simulation study, we evaluated anticlustering and other approaches with regard to

their ability to create similar sets. As competitors of anticlustering, we chose random

assignment and a matching based algorithm following Lahl and Pietrowsky (2006). The

random assignment method was realized by simply assigning each stimulus to a set at

random. The matching algorithm was specified as follows: We determined the pairwise

Euclidean distance between all stimuli, selected the two most similar items, and randomly

allocated each of the matched items to a different set. The matched items were removed

from the pool and the procedure was repeated until each item was part of a set.

In total, 10,000 simulation runs were conducted: 5,000 runs with K = 2 (i.e., the data

was split into two equal-sized parts) and 5,000 runs with K = 3. Data was generated as

follows: A stimulus was defined by a collection of numeric features. The number of stimuli

and the number of features varied between simulation runs. The number of stimuli (N) was

randomly varied between 10 and 100 while N was always a multiple of K to ensure that the

stimulus pool could be evenly split into K parts of size N
K
. The number of features was

randomly varied between 1 and 4. For each run, the distribution of each feature was

randomly determined to be either (a) uniform in [0, 1], (b) a standard normal distribution

with M = 0 and SD = 1, or (c) a wider normal distribution with M = 0 and SD = 2. In a

given simulation run, all features were drawn from the same distribution. Features were

generated independently, i.e., no correlation between features was modeled. In each run of

ANTICLUSTERING 21

Table 1

Running time of the three anticlustering algorithms in

dependence of N (K = 2).

N Exact ILP ILP/Preclustering Exchange Method

10 0.06 0.02 < 0.01

12 0.10 0.03 < 0.01

14 0.12 0.05 < 0.01

16 0.28 0.08 < 0.01

18 0.84 0.12 < 0.01

20 3.94 0.20 0.01

22 10.70 0.35 0.01

24 32.32 0.72 0.01

26 87.80 0.51 0.01

28 943.23 0.86 0.01

30 9939.75 0.87 0.01

40 — 13.34 0.02

50 — 200.38 0.12

60 — 2882.23 0.06

70 — 10264.85 0.08

80 — — 0.12

90 — — 0.16

100 — — 0.22

Note. ILP = Integer linear programming. Running time is

given in seconds.

ANTICLUSTERING 22

the simulation, the above mentioned methods were applied to the data set that was

generated in this run, with the following exceptions: Because integer linear programming

potentially has exponential running time but a lot of simulation runs were necessary for a

meaningful evaluation, the exact integer linear programming technique was only applied to

data sets for N ≤ 20. Integer linear programming combined with the preclustering technique

was applied to data sets for N ≤ 40. Matching was only applied for K = 2 because the

matching procedure is based on the selection of item pairs and cannot readily be extended to

K > 2. The remaining methods were applied to all data sets.

We used the following evaluation criteria: First, we computed the anticluster editing

objective Dwithin based on the Euclidean distance. The absolute values Dwithin were

converted to percentages (%Dwithin) using the following rule: First, the maximum value of

Dwithin attained in a given run was determined. Next, the objective value attained by each

method was divided by the maximum and multiplied by 100, ensuring that best value per

run was 100%. Whenever the exact integer linear programming method was applied (i.e.,

when N ≤ 20), %Dwithin could be interpreted as the percentage of the optimal value that

was possible. For N > 20, %Dwithin = 100% represented the best solution that was found in

a run, that was however not necessarily optimal.

The anticluster editing objective was primarily computed to compare the performance

of the different algorithms, in particular to evaluate how well the heuristic exchange method

performs in comparison to the exact integer linear programming approaches. To compare the

performance of the different partitioning methods (anticluster editing, k-means anticlustering,

random assignment, matching), we additionally quantified how strongly the K sets differed

in the features’ means and standard deviations. To this end, we computed the mean and

standard deviation on each feature for each anticluster. For each feature, we then computed

the absolute difference between the minimum and maximum value of the means and

standard deviations between the anticlusters. The mean of the absolute differences across all

ANTICLUSTERING 23

features (where the number of features could vary between 1 and 4) quantified the total

dissimilarity in means (∆M) and standard deviations (∆SD). A lower value of ∆M and

∆SD indicates that the sets were more similar with regard to the respective criterion.

Table 2 shows the results of the simulation study. Anticluster editing (ACE) performed

better than random assignment and matching on all criteria and across all sample sizes.

Matching and random assignment showed even decreased performance when the stimulus

pool was small. When N increased, the similarity of the different sets generally increased

irrespective of the partitioning method. This result is evident from a general increased

similarity in feature means and standard deviations when N was larger. Table 2 also

illustrates that k-means anticlustering was most successful at minimizing differences in

feature means. However, this came at the cost of neglecting the features’ standard deviations.

Even a simple random assignment consistently resulted in more similar standard deviations

than k-means anticlustering that tended to over-optimize similarity in means. Anticluster

editing accomplished a better tradeoff between minimizing differences in means as well as

standard deviations.

The three anticluster editing algorithms performed similarly well. In comparison to the

exact integer linear programming technique, preclustering hardly impaired the solution

quality. Moreover, the average objective Dwithin found by the heuristic exchange algorithm

was always within a small margin (≤ 0.3%) of the exact approaches. This constitutes a

remarkable performance for a heuristic that does not make any guarantees with regard to

optimality. Therefore, the anticlust program includes useful optimization algorithms for

small to large stimulus pools.

Applications

We present three applications to illustrate how the R package anticlust can be used

to partition data sets into similar parts. The package anticlust is freely available from the

ANTICLUSTERING 24

Table 2

Results of the simulation study.

K = 2 K = 3

%Dwithin ∆M ∆SD %Dwithin ∆M ∆SD

N ∈ {10, ..., 20}

ACE-ILP 100.00 0.13 0.24 100.00 0.27 0.50

ACE-ILP/Preclustering 99.99 0.14 0.22 99.95 0.27 0.50

ACE-Exchange 99.85 0.14 0.24 99.70 0.29 0.51

Matching 98.53 0.32 0.27 — — —

K-Means-Anticlustering 98.49 0.06 0.37 97.93 0.16 0.69

Random assignment 94.99 0.46 0.34 90.56 0.81 0.63

N ∈ {21, ..., 40}

ACE-ILP/Preclustering 100.00 0.05 0.11 100.00 0.12 0.25

ACE-Exchange 99.92 0.06 0.12 99.83 0.13 0.27

Matching 99.46 0.17 0.15 — — —

K-Means-Anticlustering 99.02 0.02 0.25 98.22 0.05 0.45

Random assignment 97.26 0.32 0.22 94.85 0.58 0.43

N ∈ {42, ..., 100}

ACE-Exchange 100.00 0.02 0.06 100.00 0.05 0.12

Matching 99.84 0.09 0.09 — — —

K-Means-Anticlustering 99.47 0.00 0.16 99.05 0.01 0.28

Random assignment 98.74 0.22 0.15 97.52 0.39 0.27

Note. ACE = Anticluster Editing. ILP = Integer linear programming.

%Dwithin is the percentage of the best anticluster editing objective that was

found in a simulation run. ∆M and ∆SD quantify how strongly means and

standard deviations differed between anticlusters. Table cells contain the

average objectives across simulation runs, split by N .

ANTICLUSTERING 25

website https://github.com/m-Py/anticlust where installation instructions are included. All

applications presented here can be reproduced completely by code that is provided in the

accompanying OSF repository (Papenberg & Klau, 2019).

Application I: Stimulus assignment

Our first example makes use of a data set describing 96 stimuli that was courteously

provided by Marie Luisa Schaper (Schaper et al., 2019a, 2019b). The data set is included in

the package anticlust and available after installation. It can be accessed using the

following R code:

library(anticlust) # load the package

data(schaper2019) # load the data set

The item pool consists of 96 words. Each word represents an object that is either

typically found in a bathroom or in a kitchen (see Table 3). For their experiments, Schaper

et al. manually partitioned the 96 words into 3 lists that should be as similar as possible

with regard to four numeric criteria. Such manual partitioning is tedious work, usually

consisting of numerous iterations of switching stimuli between sets, either until the sets are

deemed to be similar enough or until the researcher runs out of patience. Despite the high

effort, the results are usually suboptimal. In particular, it is difficult to manually minimize

differences with regard to multiple numeric variables. As our example illustrates,

anticlustering may save hours of daunting work and the results are strongly improved as

compared to a manual assignment.

To partition the stimulus pool into three equal-sized sets, we make use of the main

function of the package anticlust: anticlustering(). Its input is a data table where

each row is a stimulus and each column is a numeric feature (that is, columns T, A, S and F

in Table 3). A parameter K specifies the number of stimulus sets. Moreover, we employ the

argument categories to balance the frequency of kitchen and bathroom items across sets.

https://github.com/m-Py/anticlust

ANTICLUSTERING 26

Table 3

A subset of the item pool used by Schaper et al.

Object Room T A S F

moisture mask bathroom 4.10 1.04 5 21

sanitary pad bathroom 4.22 1.12 4 19

hairspray bathroom 4.32 1.13 2 17

tampon bathroom 4.35 1.22 2 17

kitchen chair kitchen 4.30 1.16 3 19

potato peeler kitchen 4.32 1.00 3 18

sugar basin kitchen 4.40 1.08 4 20

salad cutlery kitchen 4.48 1.02 4 20

...

Note. Room = The room in which the object is

typically found. T = Typicality: How expected is

it to find the object in the typical room? A =

Atypicality: How expected is it to find the object

in the atypical room? S = number of syllables in

the German object name. F = word frequency.

Anticlustering was used to create three word lists

that have minimal differences with regard to the

four numeric variables while balancing out room

frequency across lists.

ANTICLUSTERING 27

This is consistent with the manual assignment by Schaper et al. who sought to make the

experimental sets similar with regard to the numeric variables as well as to the categorical

variable Room. Categorical restrictions are implemented through an adjustment of the

exchange algorithm that anticlustering() calls by default: The initial assignment is

conducted in such a way that the categories are balanced across anticlusters. Then, only

items belonging to the same category are considered to be feasible exchange partners,

ensuring that the categories remain balanced throughout. The following code first selects the

columns containing the relevant numeric features, then calls the anticlustering procedure,

and finally stores the output in a variable called anticlusters:

features <- schaper2019[, 3:6]

anticlusters <- anticlustering(

features,

K = 3,

objective = "distance",

method = "exchange",

preclustering = FALSE,

categories = schaper2019$room

)

The output of the anticlustering() function is a vector of length 96 where each

entry is a number between 1 and 3 representing the anticluster each item has been assigned

to. Note that the output can vary between different function calls because the initial state of

the exchange algorithm is random. While the exchange algorithm is executed quickly with a

pool of 96 items (< 1s), the exact integer linear programming method is no longer applicable.

With fewer items, the argument method could be set to "ilp" to obtain an optimal solution.

Setting the optional argument preclustering to TRUE would additionally activate

preclustering restrictions.

ANTICLUSTERING 28

Table 4

Using anticlustering on the data set provided by Schaper et al.

Typicality Atypicality Syllables Frequency

Anticluster Editing

List 1 4.49 (0.26) 1.10 (0.07) 3.44 (1.01) 18.28 (2.40)

List 2 4.49 (0.27) 1.11 (0.07) 3.38 (0.87) 18.31 (2.44)

List 3 4.50 (0.23) 1.11 (0.06) 3.44 (0.91) 18.34 (2.39)

∆M (∆SD) 0.01 (0.04) 0.01 (0.01) 0.06 (0.14) 0.06 (0.05)

K-Means Anticlustering

List 1 4.49 (0.24) 1.10 (0.06) 3.41 (0.61) 18.31 (2.42)

List 2 4.49 (0.26) 1.10 (0.07) 3.41 (1.01) 18.31 (2.69)

List 3 4.49 (0.25) 1.10 (0.07) 3.44 (1.11) 18.31 (2.09)

∆M (∆SD) 0.00 (0.02) 0.00 (0.01) 0.03 (0.50) 0.00 (0.60)

Manual assignment

List 1 4.49 (0.25) 1.10 (0.07) 3.31 (0.90) 17.94 (2.47)

List 2 4.49 (0.25) 1.10 (0.06) 3.41 (0.71) 18.56 (2.53)

List 3 4.49 (0.25) 1.10 (0.07) 3.53 (1.14) 18.44 (2.17)

∆M (∆SD) 0.00 (0.00) 0.00 (0.01) 0.22 (0.43) 0.62 (0.36)

Random assignment

List 1 4.47 (0.26) 1.10 (0.06) 3.69 (0.78) 18.44 (2.08)

List 2 4.55 (0.25) 1.10 (0.07) 3.09 (1.06) 17.94 (2.54)

List 3 4.46 (0.24) 1.10 (0.07) 3.47 (0.84) 18.56 (2.54)

∆M (∆SD) 0.09 (0.02) 0.00 (0.01) 0.60 (0.28) 0.62 (0.46)

Note. Word lists were created via anticlustering, random assignment or manually by

Schaper et al. (2019a, 2019b). Table cells contain means and standard deviations (in

brackets) by word list. ∆M and ∆SD are the absolute difference between the

minimum and maximum of the mean and standard deviation, respectively.

ANTICLUSTERING 29

We applied both anticluster editing and k-means anticlustering to the data set by

varying the parameter objective between the default option "distance" (anticluster

editing) and "variance" (k-means anticlustering). When comparing the results of

anticluster editing and k-means anticlustering, a typical picture is illustrated in Table 4:

K-means anticlustering is best suited to optimize the similarity of the feature means; in all

but one case, they perfectly agree on two decimals. Anticluster editing is better suited to

minimize differences in standard deviations while also minimizing differences in means rather

successfully. As also shown in Table 4, the manual assignment established by Schaper et

al. successfully minimized differences in mean typicality ratings. It was, however, apparently

difficult to minimize differences in word frequency and the number of syllables at the same

time. This is a typical result; it is very difficult for people to equalize more than a few

variables when creating similar lists. In contrast, anticlustering optimized similarity with

regard to all four variables. Table 4 also illustrates the results of an entirely random stimulus

assignment. The means and standard deviations differ most strongly in this case. Clearly,

random assignment does not achieve the goal of creating similar stimulus sets.

Application II: Independent samples for cross validation

With the increasing availability of large data sets in psychological research, machine

learning has become an increasingly important tool in data analysis (e.g., Chen & Wojcik,

2016; Adjerid & Kelley, 2018). In contrast to most classical methodology in psychological

research, machine learning has a stronger focus on predicting behaviour rather than its

explanation (Yarkoni & Westfall, 2017). The shift in focus towards prediction is

accompanied with a stronger reliance on cross validation techniques to test the predictive

performance of statistical models on independent data. By validating a model on

independent data, cross validation prevents overfitting and allows for an unbiased estimate of

its predictive accuracy (Chen & Wojcik, 2016). Because truly independent data sets are

usually not available, cross validation instead relies on splitting the data set at hand into

ANTICLUSTERING 30

multiple parts, applying a statistical model to one of them, and finally testing its predictive

accuracy on the other parts (Koul, Becchio, & Cavallo, 2018). In the most simple case, the

data is just split into two sets: a training set and a test set. The training set is used to build

a statistical model; the test set is used for model validation. Another popular cross

validation technique is k-fold cross validation where the data set is split into k parts (e.g.,

into 5 or 10 folds). The model is trained on k − 1 parts and validated on the remaining one;

this process is repeated until each fold has been used as the validation sample.

In regular cross-validation, data sets are randomly split. A potential problem with

random splitting is that it may cause an uneven distribution of the input variables across

splits. This distortion may unwantedly affect the estimated prediction accuracy (Zeng &

Martinez, 2000). To overcome this potential shortcoming, we illustrate how to use the

anticlust package to partition a data sets into independent—but equivalent—samples for

cross validation. We make use of a data set consisting of responses to the Narcissistic

Personality Inventory (NPI; Raskin & Terry, 1988). The NPI consists of 40 items where each

item is a forced choice between two statements. One of the statements is interpreted as a

narcissistic self description. For example, one NPI item reads:

1. I am no better or worse than most people.

2. I think I am a special person.

For this item, statement 2 is interpreted as the narcissistic response. Choices are

scored binary: 1 indicates that a narcissistic response was selected, 0 indicates that the

narcissistic response was not selected. The NPI data set that we use in our example was

openly published by the Open-Source Psychometrics Project and is freely available online.3

After removing cases that include missing responses, the data set consisted of 10,440 cases,

stored in the R variable npi. Our accompanying OSF repository contains the required code

3 https://openpsychometrics.org/_rawdata/

https://openpsychometrics.org/_rawdata/

ANTICLUSTERING 31

to read the data, score the responses, and to select the relevant columns—this preprocessing

has been left here to focus on the anticlustering application (Papenberg & Klau, 2019). We

used k-means anticlustering to split the sample into five parts that could be used in a 5-fold

cross validation. A function was employed that is specialized on processing large data sets

(fast_anticlustering()), the details of which are discussed below. The code ran in about

4 minutes on a personal computer (Intel Core i7-7700, 3.60GHz).

samples <- fast_anticlustering(

subset(npi, select = score_Q1:score_Q40),

K = 5,

categories = npi$gender,

k_neighbours = 5

)

As first argument, we passed the binary item scores—a 10,440 × 40 response

matrix—to ensure that responses to all 40 items were distributed similarly across the five

folds. Additionally, we balanced participant gender across the five folds using the argument

categories = npi$gender. This was done to illustrate how anticlust can conduct a

stratified split for cross validation; it was not done to suggest that balancing gender is

generally useful in cross validation.

As the result of anticlustering, the average test score (i.e., the average sum of the item

scores) across the 40 items was 13.37—in each of the five cross validation samples. In

comparison, an entirely random split resulted in average test scores of 13.12, 13.20, 13.28,

13.54, and 13.72. Even more impressively, since we applied anticlustering to individual items

rather than aggregate test scores, item-level responses were also astonishingly similar across

folds. For 38 out of the 40 items (95%), the mean item difficulties perfectly agreed on 2

decimals—across all five samples. With the random split, this never happened. Moreover,

anticlustering also ensured that participant gender was balanced across folds (see Table 5),

ANTICLUSTERING 32

Table 5

Frequency of self-reported gender across cross

validation samples after using anticlustering.

no gender chosen male female other

Sample 1 2 1199 880 7

Sample 2 2 1199 879 8

Sample 3 2 1199 879 8

Sample 4 3 1199 879 7

Sample 5 3 1198 880 7

which is not at all taken into account when using a random split.

In this application, we used an anticlust function that was specifically implemented

to work with large data sets: fast_anticlustering(). This function always employs

k-means anticlustering because k-means is preferred over anticluster editing when N is large.

The anticluster editing objective is given as the sum of pairwise dissimilarities, and therefore

a quadratic inter-item dissimilarity matrix needs to be computed and stored in memory.

K-means only requires to compute distances between each data point and its cluster center.

In the current example, this results in holding 54,491,580 (anticluster editing) versus 52,200

(k-means anticlustering) distances. To reduce the computational burden further,

fast_anticlustering() has an argument k_neighbours to determine the number of

exchange partners per element. By default, exchanges are attempted with all persons who

are currently assigned to a different anticluster and who are of the same gender. This implies

that several thousand exchanges are realized for each of the 10,440 persons, which is not

feasible in acceptable running time. When using k_neighbours = 5, only 5 exchanges

realized for each person, reducing the computational burden considerably. Who serves as

exchange partner is determined using a nearest neighbour search that is implemented

ANTICLUSTERING 33

through the R package RANN (Arya, Mount, Kemp, & Jefferis, 2019; Arya & Mount, 1993).

That is, the five most similar persons of the same gender served as exchange partners. Using

nearest neighbours follows the same logic as preclustering: by swapping only very similar

data points between anticlusters, only exchanges are conducted that are consistent with a

high between-cluster similarity.

Application III: Parallel test splits

In educational psychology, it is often of interest to split an item pool into parts of

equal difficulty (Gierl et al., 2017), and ideally of equal item discrimination (Brusco et al.,

2013). The most important example is the creation of parallel versions of an examination to

make students’ achievement comparable between different cohorts. Anticlustering can be

used to achieve this goal. For the purpose of illustration, we used the NPI data set from the

previous example to split the 40 items into four equivalent parts. First, we computed item

difficulty and part-whole corrected item discrimination indices for all 40 items; item indices

were stored in a two-column matrix (variable item_indices in R). The code used for this

preprocessing can be retrieved from the accompanying OSF repository (Papenberg & Klau,

2019). After preprocessing, we applied anticluster editing as follows:

split <- anticlustering(

item_indices,

K = 4

)

The code was executed in less than a second. The resulting descriptive statistics are

shown in Table 6. Anticluster editing minimized differences with regard to both item

difficulty and item discrimination between test sets, showing that anticlustering can

successfully be used to create fair parallel tests in the context of school or university

examinations. Again, a random split performed far worse than anticlustering (see Table 6).

ANTICLUSTERING 34

Table 6

Descriptive item statistics by item set after random assignment

and anticlustering.

Item difficulty Item discrimination

Anticluster Editing

Set 1 0.33 (0.11) 0.42 (0.10)

Set 2 0.33 (0.12) 0.42 (0.09)

Set 3 0.34 (0.14) 0.43 (0.07)

Set 4 0.33 (0.13) 0.43 (0.08)

Random assignment

Set 1 0.34 (0.10) 0.45 (0.08)

Set 2 0.32 (0.14) 0.42 (0.08)

Set 3 0.37 (0.14) 0.39 (0.09)

Set 4 0.30 (0.10) 0.45 (0.08)

Note. Table cells contain means and standard deviations (in

brackets).

Discussion

We presented anticlustering as a method to partition a pool of elements into equivalent

parts, a task that is ubiquitous in psychological research. Even though the usefulness of

anticlustering has been exploited across a variety of research fields, it has only recently been

recognized as a potential tool for researchers in psychology (Brusco et al., in press). By

contributing our free and open source R package anticlust, researchers are now able to

apply the anticlustering methodology easily.

We described two anticlustering methods: k-means anticlustering and anticluster

editing, the latter also known as the maximum diverse grouping problem (Fan et al., 2011).

ANTICLUSTERING 35

K-means anticlustering is most successful at minimizing differences in cluster means, but

may neglect similarity of standard deviations. For some applications such as creating parallel

stimulus sets, it may not be desirable just to focus on the mean (e.g., van Casteren & Davis,

2007; Smith & Kutas, 2015). It is well known that the mean may perform poorly as a

measure of overall cluster similarity: similar means can be obtained even when the underlying

distributions clearly differ (Anscombe, 1973). Hence, some caution is needed when applying

k-means anticlustering to assemble similar sets. Anticluster editing achieves a better balance

between minimizing differences in means and standard deviations and should be preferred

whenever overall similarity—and not just average similarity—should be maximized. However,

we generally advocate to inspect the quality of an anticlustering solution by comparing the

descriptive statistics between sets, no matter what method has been employed. For large

data sets, k-means anticlustering is more efficient and should be preferred.

In anticlust, we implemented an exchange method as our primary algorithmic tool.

As confirmed in our simulation study, the exchange method is well suited to solve

anticlustering problems; its performance was consistently close to the exact integer linear

programming methods. However, on large data sets, the exchange algorithm may be

outperformed by meta-heuristics that have recently received increasing interest (Gallego et

al., 2013; Palubeckis et al., 2015). Nevertheless, we opted to implement the exchange

algorithm because it was conveniently customizable to allow for categorical restrictions, i.e.,

balancing nominal variables between groups. Categorical restrictions have usually not been

taken into consideration in anticlustering algorithms, but they are crucial for applications in

psychology. Additionally, by adjusting the number of exchange partners, we were able to

successfully apply anticlustering to large problem instances and the results were excellent

(see Application II).

To conclude, anticlustering is a—now accessible—tool that quickly partitions an item

pool into equivalent parts, therefore solving a problem that frequently occurs in

ANTICLUSTERING 36

psychological research, but so far lacked an appropriate software solution. Anticlustering can

be applied easily using the free and open source R package anticlust. Based on the

demands of the user community, we intend to maintain and further improve this software

package in the future.

ANTICLUSTERING 37

References

Adjerid, I., & Kelley, K. (2018). Big data in psychology: A framework for research

advancement. American Psychologist, 73 (7), 899–917.

Aloise, D., Deshpande, A., Hansen, P., & Popat, P. (2009). NP-hardness of euclidean

sum-of-squares clustering. Machine Learning, 75 (2), 245–248.

Anscombe, F. J. (1973). Graphs in statistical analysis. The American Statistician, 27 (1),

17–21. https://doi.org/10.1080/00031305.1973.10478966

Armstrong, B. C., Watson, C. E., & Plaut, D. C. (2012). SOS! An algorithm and software

for the stochastic optimization of stimuli. Behavior Research Methods, 44, 675–705.

https://doi.org/10.3758/s13428-011-0182-9

Arya, S., Mount, D., Kemp, S. E., & Jefferis, G. (2019). RANN: Fast nearest neighbour

search (wraps ANN library) using L2 metric. Retrieved from

https://CRAN.R-project.org/package=RANN

Arya, S., & Mount, D. M. (1993). Approximate nearest neighbor queries in fixed dimensions.

In V. Ramachandran (Ed.), Proceedings of the fourth annual ACM-SIAM symposium

on discrete algorithms (pp. 271–280). Philadelphia, PA: Society for Industrial;

Applied Mathematics.

Aust, F., & Barth, M. (2018). papaja: Create APA manuscripts with R Markdown.

Retrieved from https://github.com/crsh/papaja

Baker, K. R., & Powell, S. G. (2002). Methods for assigning students to groups: A study of

alternative objective functions. Journal of the Operational Research Society, 53 (4),

397–404.

Bansal, N., Blum, A., & Chawla, S. (2004). Correlation clustering. Machine Learning, 56,

https://doi.org/10.1080/00031305.1973.10478966
https://doi.org/10.3758/s13428-011-0182-9
https://CRAN.R-project.org/package=RANN
https://github.com/crsh/papaja

ANTICLUSTERING 38

89–113. https://doi.org/10.1023/B:MACH.0000033116.57574.95

Böcker, S., Briesemeister, S., & Klau, G. W. (2011). Exact algorithms for cluster editing:

Evaluation and experiments. Algorithmica, 60, 316–334.

https://doi.org/10.1007/s00453-009-9339-7

Bravo, H. C., & Theussl, S. (2016). Rcplex: R interface to CPLEX. Retrieved from

https://CRAN.R-project.org/package=Rcplex

Brusco, M. J., Cradit, J. D., & Steinley, D. (in press). Combining diversity and dispersion

criteria for anticlustering: A bicriterion approach. British Journal of Mathematical

and Statistical Psychology. https://doi.org/10.1111/bmsp.12186

Brusco, M. J., & Köhn, H.-F. (2009). Clustering qualitative data based on binary

equivalence relations: Neighborhood search heuristics for the clique partitioning

problem. Psychometrika, 74 (4), 685–703.

Brusco, M. J., Köhn, H. F., & Steinley, D. (2013). Exact and approximate methods for a

one-dimensional minimax bin-packing problem. Annals of Operations Research,

206 (1), 611–626.

Brusco, M. J., & Stahl, S. (2001). Compact integer-programming models for extracting

subsets of stimuli from confusion matrices. Psychometrika, 66 (3), 405–419.

Brusco, M. J., & Steinley, D. (2006). Clustering, seriation, and subset extraction of

confusion data. Psychological Methods, 11 (3), 271–286.

Brusco, M. J., & Steinley, D. (2010). K-balance partitioning: An exact method with

applications to generalized structural balance and other psychological contexts.

Psychological Methods, 15 (2), 145–157.

Buchner, A., & Wippich, W. (2000). On the reliability of implicit and explicit memory

https://doi.org/10.1023/B:MACH.0000033116.57574.95
https://doi.org/10.1007/s00453-009-9339-7
https://CRAN.R-project.org/package=Rcplex
https://doi.org/10.1111/bmsp.12186

ANTICLUSTERING 39

measures. Cognitive Psychology, 40, 227–259. https://doi.org/10.1006/cogp.1999.0731

Chen, E. E., & Wojcik, S. P. (2016). A practical guide to big data research in psychology.

Psychological Methods, 21 (4), 458–474.

Chen, P.-H. (2017). Should We Stop Developing Heuristics and Only Rely on Mixed Integer

Programming Solvers in Automated Test Assembly? A Rejoinder to van der Linden

and Li (2016). Applied Psychological Measurement, 41, 227–240.

https://doi.org/10.1177/0146621617695523

Cutler, A. (1981). Making up materials is a confounded nuisance, or: Will we able to run

any psycholinguistic experiments at all in 1990? Cognition, 10, 65–70.

https://doi.org/10.1016/0010-0277(81)90026-3

Desrosiers, J., Mladenović, N., & Villeneuve, D. (2005). Design of balanced MBA student

teams. Journal of the Operational Research Society, 56 (1), 60–66.

Dry, M. J., & Storms, G. (2009). Similar but not the same: A comparison of the utility of

directly rated and feature-based similarity measures for generating spatial models of

conceptual data. Behavior Research Methods, 41, 889–900.

https://doi.org/10.3758/BRM.41.3.889

Fan, Z., Chen, Y., Ma, J., & Zeng, S. (2011). A hybrid genetic algorithmic approach to the

maximally diverse grouping problem. Journal of the Operational Research Society,

62 (7), 1423–1430.

Feo, T. A., & Khellaf, M. (1990). A class of bounded approximation algorithms for graph

partitioning. Networks, 20 (2), 181–195.

Gallego, M., Laguna, M., Marti, R., & Duarte, A. (2013). Tabu search with strategic

oscillation for the maximally diverse grouping problem. Journal of the Operational

https://doi.org/10.1006/cogp.1999.0731
https://doi.org/10.1177/0146621617695523
https://doi.org/10.1016/0010-0277(81)90026-3
https://doi.org/10.3758/BRM.41.3.889

ANTICLUSTERING 40

Research Society, 64 (5), 724–734.

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory

of NP-completeness. New York: Freeman.

Gierl, M., Daniels, L., & Zhang, X. (2017). Creating parallel forms to support on-demand

testing for undergraduate students in psychology. Journal of Measurement and

Evaluation in Education and Psychology, 8 (3), 288–302.

Glover, F., Kuo, C.-C., & Dhir, K. S. (1998). Heuristic algorithms for the maximum diversity

problem. Journal of Information and Optimization Sciences, 19 (1), 109–132.

Grötschel, M., & Wakabayashi, Y. (1989). A cutting plane algorithm for a clustering

problem. Mathematical Programming, 45, 59–96.

https://doi.org/10.1007/BF01589097

Heck, D. W., & Erdfelder, E. (2016). Extending multinomial processing tree models to

measure the relative speed of cognitive processes. Psychonomic Bulletin & Review,

23, 1440–1465. https://doi.org/10.3758/s13423-016-1025-6

IBM. (2019). ILOG CPLEX Optimization studio [Integer linear programming solver].

Retrieved from https://www.ibm.com/products/ilog-cplex-optimization-studio

Jain, A. K. (2010). Data clustering: 50 years beyond k-means. Pattern Recognition Letters,

31 (8), 651–666.

Karp, R. M. (1986). Combinatorics, complexity, and randomness. Communications of the

ACM, 29 (2), 97–109.

Koul, A., Becchio, C., & Cavallo, A. (2018). Cross-validation approaches for replicability in

psychology. Frontiers in Psychology, 9, 1117.

https://doi.org/10.1007/BF01589097
https://doi.org/10.3758/s13423-016-1025-6
https://www.ibm.com/products/ilog-cplex-optimization-studio

ANTICLUSTERING 41

Krass, D., & Ovchinnikov, A. (2006). The university of toronto’s rotman school of

management uses management science to create mba study groups. Interfaces, 36 (2),

126–137.

Kroneisen, M., & Bell, R. (2018). Remembering the place with the tiger: Survival processing

can enhance source memory. Psychonomic Bulletin & Review, 25, 667–673.

https://doi.org/10.3758/s13423-018-1431-z

Lahl, O., & Pietrowsky, R. (2006). EQUIWORD: A software application for the automatic

creation of truly equivalent word lists. Behavior Research Methods, 38, 146–152.

https://doi.org/10.3758/BF03192760

Lahl, O., Wispel, C., Willigens, B., & Pietrowsky, R. (2008). An ultra short episode of sleep

is sufficient to promote declarative memory performance. Journal of Sleep Research,

17, 3–10. https://doi.org/10.1111/j.1365-2869.2008.00622.x

Nemhauser, G. L., & Wolsey, L. A. (1988). Integer and combinatorial optimization. New

York: John Wiley & Sons.

Nosofsky, R. M. (1992). Similarity scaling and cognitive process models. Annual Review of

Psychology, 43, 25–53. https://doi.org/10.1146/annurev.ps.43.020192.000325

Palubeckis, G., Ostreika, A., & Rubliauskas, D. (2015). Maximally diverse grouping: An

iterated tabu search approach. Journal of the Operational Research Society, 66 (4),

579–592.

Papenberg, M. (2019). Anticlust: Subset partitioning via anticlustering. Retrieved from

https://github.com/m-Py/anticlust

Papenberg, M., & Klau, G. W. (2019). Anticlustering [Open Science Framework Repository].

Retrieved from https://doi.org/10.17605/OSF.IO/CD5SR

https://doi.org/10.3758/s13423-018-1431-z
https://doi.org/10.3758/BF03192760
https://doi.org/10.1111/j.1365-2869.2008.00622.x
https://doi.org/10.1146/annurev.ps.43.020192.000325
https://github.com/m-Py/anticlust
https://doi.org/10.17605/OSF.IO/CD5SR

ANTICLUSTERING 42

Raskin, R., & Terry, H. (1988). A principal-components analysis of the narcissistic

personality inventory and further evidence of its construct validity. Journal of

Personality and Social Psychology, 54 (5), 8–902.

R Core Team. (2019). R: A language and environment for statistical computing. Retrieved

from https://www.R-project.org/

Rokach, L., & Maimon, O. (2005). Clustering methods. In O. Maimon & L. Rokach (Eds.),

Data mining and knowledge discovery handbook (pp. 321–352). New York: Springer.

Schaper, M. L., Kuhlmann, B. G., & Bayen, U. J. (2019a). Metacognitive expectancy effects

in source monitoring: Beliefs, in-the-moment experiences, or both? Journal of

Memory and Language, 107, 95–110. https://doi.org/10.1016/j.jml.2019.03.009

Schaper, M. L., Kuhlmann, B. G., & Bayen, U. J. (2019b). Metamemory expectancy illusion

and schema-consistent guessing in source monitoring. Journal of Experimental

Psychology: Learning, Memory, and Cognition, 45, 470–496.

https://doi.org/10.1037/xlm0000602

Shamir, R., Sharan, R., & Tsur, D. (2004). Cluster graph modification problems. Discrete

Applied Mathematics, 144, 173–182. https://doi.org/10.1016/j.dam.2004.01.007

Smith, N. J., & Kutas, M. (2015). Regression-based estimation of ERP waveforms: II.

Nonlinear effects, overlap correction, and practical considerations. Psychophysiology,

52, 169–181. https://doi.org/10.1111/psyp.12320

Späth, H. (1986). Anticlustering: Maximizing the variance criterion. Control and

Cybernetics, 15 (2), 213–218.

Steghöfer, J.-P., Behrmann, P., Anders, G., Siefert, F., & Reif, W. (2013). HiSPADA:

Self-organising hierarchies for large-scale multi-agent systems. In M. Bauer, R.

https://www.R-project.org/
https://doi.org/10.1016/j.jml.2019.03.009
https://doi.org/10.1037/xlm0000602
https://doi.org/10.1016/j.dam.2004.01.007
https://doi.org/10.1111/psyp.12320

ANTICLUSTERING 43

Calinescu, M. Grottke, & B. Dillenseger (Eds.), Proceedings of the IARIA

international conference on autonomic and autonomous systems (ICAS) (pp. 71–76).

Lisbon, Portugal: International Academy, Research, and Industry Association.

Steinley, D. (2006). K-means clustering: A half-century synthesis. British Journal of

Mathematical and Statistical Psychology, 59 (1), 1–34.

Tversky, A. (1977). Features of similarity. Psychological Review, 84, 327–352.

https://doi.org/10.1037/0033-295X.84.4.327

Uroŝevic, D. (2016). Variable neighborhood search for maximum diverse grouping problem.

Yugoslav Journal of Operations Research, 24 (1), 21–33.

Valev, V. (1983). Set partition principles. In J. Kozesnik (Ed.), Transactions of the ninth

Prague conference on information theory, statistical decision functions, and random

processes (Prague, 1982) (pp. 251–256). Prague: Springer Netherlands.

Valev, V. (1998). Set partition principles revisited. In A. Amin, D. Dori, P. Pudil, & H.

Freeman (Eds.), Advances in pattern recognition. SSPR /SPR 1998. Lecture notes in

computer science (pp. 875–881). Heidelberg: Springer.

van Casteren, M., & Davis, M. H. (2007). Match: A program to assist in matching the

conditions of factorial experiments. Behavior Research Methods, 39, 973–978.

https://doi.org/10.3758/BF03192992

van der Linden, W. J. (2005). Linear models for optimal test design. New York: Springer

Science.

van Rooij, I. (2008). The tractable cognition thesis. Cognitive Science, 32, 939–984.

https://doi.org/10.1080/03640210801897856

Weitz, R., & Lakshminarayanan, S. (1997). An empirical comparison of heuristic and graph

https://doi.org/10.1037/0033-295X.84.4.327
https://doi.org/10.3758/BF03192992
https://doi.org/10.1080/03640210801897856

ANTICLUSTERING 44

theoretic methods for creating maximally diverse groups, vlsi design, and exam

scheduling. Omega, 25 (4), 473–482.

Weitz, R., & Lakshminarayanan, S. (1998). An empirical comparison of heuristic methods

for creating maximally diverse groups. Journal of the Operational Research Society,

49 (6), 635–646.

Wickham, H., François, R., Henry, L., & Müller, K. (2019). Dplyr: A grammar of data

manipulation. Retrieved from https://CRAN.R-project.org/package=dplyr

Wittkop, T., Emig, D., Lange, S., Rahmann, S., Albrecht, M., Morris, J. H., . . . Baumbach,

J. (2010). Partitioning biological data with transitivity clustering. Nature Methods, 7,

419–420. https://doi.org/10.1038/nmeth0610-419

Yarkoni, T., & Westfall, J. (2017). Choosing prediction over explanation in psychology:

Lessons from machine learning. Perspectives on Psychological Science, 12 (6),

1100–1122.

Zahn, C. T. (1964). Approximating symmetric relations by equivalence relations. Journal of

the Society for Industrial and Applied Mathematics, 12 (4), 840–847.

Zeng, X., & Martinez, T. R. (2000). Distribution-balanced stratified cross-validation for

accuracy estimation. Journal of Experimental & Theoretical Artificial Intelligence, 12,

1–12. https://doi.org/10.1080/095281300146272

https://CRAN.R-project.org/package=dplyr
https://doi.org/10.1038/nmeth0610-419
https://doi.org/10.1080/095281300146272

